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Abstract

We will construct a minimal and co-minimal projection from L7([0, 1]") onto L7([0, 1]™) +
-+ LP([0, 1]™), where n = ny + -+ + ni (see Theorem 2.9). This is a generalization of a result
of Cheney, Halton and Light from (Approximation Theory in Tensor Product Spaces, Lecture
Notes in Mathematics, Springer, Berlin, 1985; Math. Proc. Cambridge Philos. Soc. 97 (1985)
127; Math. Z. 191 (1986) 633) where they proved the minimality in the case n = 2. We provide
also some further generalizations (see Theorems 2.10 and 2.11 (Orlicz spaces) and Theorem
2.8). Also a discrete case (Theorem 2.2) is considered. Our approach differs from methods used
in [8,13,20].
© 2003 Elsevier Inc. All rights reserved.
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0. Introduction

Our aim is to find a minimal projection from a space of measurable functions on
[0,1]" (equipped, e.g., with the L, norm or the Orlicz norm) onto subspaces V' of
functions of “block independent variables™ (the space V" appears naturally in tensor
product settings).
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Definition 0.1. Take any representation of n as a sum of k factors, i.e., n=
ny +ny + --- + ng. Then any function of the form (put v; = n; + -+ + n):

f(xl7 ~--axrl) :ﬁ(xla "~7xvl) +f2(xb‘1+la --~7xb‘2) + - +fk(xv/\.,|+1> -"7xb‘k)

we will call a function of block independent variables corresponding to the given
representation n = ny + --- + ng.

This problem was solved in the case of L, norm for n =2 and the partition
2 =141 by Cheney, Halton and Light (see [8,13,20]). They gave a formula for a
minimal projection in a discrete case too. Here we will present a new formula for
minimal and co-minimal projections in more general settings. What is more, the
techniques used here differ from which they use (we will combine the Rudin theorem
with the Chalmers—Metcalf theorem). Additionally, we will observe that our
projections are also co-minimal.

Let us now introduce some basics facts concerning projections and some crucial
theorems.

Let 2(X, V), denote the set of all continuous linear projections from X, onto V,
ie.,

PX,V)={PeL(X,V): P/, =Idy}.
A projection Pye Z(X, V), is called minimal if
[|Pol| = A(V, X) = inf{[|P[|: PeP(X,V)}.

The constant A(V, X), is called the relative projection constant.
A projection Pye 2(X, V), is called co-minimal if

\|Idy — Py|| = inf{||Idy — P||: PeP?(X, V)}.

Minimal and co-minimal projections are important for two main reasons. The first
is the Lebesgue Inequality:

||x — Px||<|{ldx — P|| - dist(x, V)< (1 + ||P||) - dist(x, V).

The above inequality gives us a “good” linear approximation (the smaller the
numbers ||P||, ||Idxy — P|| the better approximation) of elements from X by elements
from V.

The second reason is connected with the Hahn—Banach theorem; having a minimal
projection we can linearly extend any functional v*e€ V* to X* (by setting x* = v*P),
or equivalently we can speak of a linear extension of the operator Idy : V' — V to X of
the smallest possible norm.

For some surveys on minimal projections the reader is referred to [4,6,9,10,14,22].

To present the main results we will need the following notions.

Definition 0.2. For any sy,s,, ...,s,€[0, 1) consider the transformation I,
acts on any function f* according to the formula

(L. ) ar, ...;an) = f(ar + s1, ...,a, +s,) for any (ay, ...,a,)€[0,1)".

.5, Which



216 Lestaw Skrzypek | Journal of Approximation Theory 123 (2003) 214-231

The addition in the above formula is considered modulo [0,1]. Therefore, such
transformations form a group which is isomorphic to the n dimensional torus 75,
hence compact.

We will, later on, prove the following main theorem (see Section 2, Theorems 2.10
and 2.11).

Theorem 0.3. Let ¢ fulfills (A,) condition and consider the Orlicz space X =
L2([0,1]") equipped with the Orlicz or the Luxemburg norm (particularly the theorem
will hold for P spaces for pe[l,+o0)). Fix any representation n = ny + --- + ny and
let V' be a subspace consisting of functions of block independent variables corresponding
to the given representation of n (see Definition 0.1). Then the projection Q: X -V,
given on any fe L?([0, 1]") by the formula

1) = /[ | Tou..o (f) itz cs... ity
011)’1*17]
n /H L o (f) ity s ...
o1
+ .. —|—‘/[ | Iul,...,uk,l,O(f)dul duz...duk,l
071’1*/‘1,{

- (k_ 1)/[ ] L. ... u,c(f)dul...duk
0,1]"

(u1 covers variables xi, ..., Xy, , Uz variables Xy, 11, ..., Xn,4n, and so on, hence we have
(X1,X2, -y Xy) = (U1, U2, ..., ux)) is both minimal and co-minimal in the set 2(X, V).

The proof will use two main theorems which, for the sake of completion, we state
below. We will also need some additional definitions.

Definition 0.4. Suppose that a Banach space X and a topological group G are related
in the following manner: to every se G corresponds a continuous linear operator
T, : X — X such that

Te:17 Ty =TT, (SGG7[6G)'

Under these conditions, G is said to act as a group of linear operators on X.
Definition 0.5. A map L: X — X commutes with G if T,LT, 1 = L for every geG.

Theorem 0.6 ((Rudin) Wojtaszczyk [27, I11.B.13]). Let X be a Banach space and V a
complemented subspace, i.e., (X, V)#0. Let G be a compact group which acts as a
group of linear operators on X such that

(1) T,(x) is a continuous function of g, for every xe X,
2) T,(V)<V, for all geG.
(3) T, are isometries, for all geG.
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Assume furthermore there exists only one projection P: X —V which commutes with
G. Then this projection is minimal and cominimal.

Fix any projection Q from X onto V', then the projection P (this unique one which
commutes with G) is defined by

P(x):/GT,,QTgf](x) dg for xeX,

where dg denotes the normalized Haar measure on G.

This theorem, however, does not imply that this projection is the unique minimal
projection as there could be projections which do not commute with G but still have
a minimal norm. For applications of the above theorem and related results see, e.g.,
[7,8,11,13,15,16,19,20,22,27].

Below we assume that X is a normed space and V is a finite-dimensional subspace.

Definition 0.7. A pair (x,y)eS(X*) x S(X*) will be called an extremal pair for
Pe?(X, W) iff y(P**x) = ||P||, where P**: X** -V is the second adjoint extension
of P to X** (S denotes here a unit sphere). Let &(P) be the set of all extremal pairs
for P.

To each (x,y)e&(P) we associate the rank-one operator y®x from X to X**
given by (y®x)(z) = y(z)x for ze X.

Theorem 0.8 (Chalmers and Metcalf [4, Theorem 1]). A4 projection Pe ?(X, V) has a
minimal norm if and only if the closed convex hull of {y®x}(x’y)eg(1,) contains an
operator Ep for which V' is an invariant subspace.

The operator Ep is given by the formula

Ep:/ yRxdu(x,y): X - X,
&(P)

where p is a probability Borel measure on &(P).

For applications of the above theorem see, e.g., [1-4,17,23,20].
For some other methods used to find a minimal projections see, e.g.,
[6,9,12,14,18,24,25].

1. Preliminary results

We will prove our theorem in more general settings than those in Theorem 0.3. To
proceed we will need some general notions first.
Fix a representation n = n; + -+ + ny.
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For any integer m consider the following partition of the cube [0,1)" into m"
smaller cubes

1 1 1
Kii, i = |:i17i1 +—) X [i27i2+—> X e X |:in7in+_>7 (1.1)
m m m

where iy, ...,i,e C = {0,L1 ... =11,

m’ Tt m

Definition 1.1. Let X, be the linear space generated by characteristic functions of
cubes Kj, ;,.. i, and Z; (I=1,...,k) be the linear space generated by characteristic
functions of cubes Kj, ;, . Jn- Let V,, be the subspace of X, of functions of block

independent variables for which in their representation as a sum f = f] + --- + f; we
have f;€ Z; (see Definition 0.1).
Moreover, put

Y= |J X, and W= ] V. (1.2)

m=2% ueN m=2" ueN

Now take any norm on Y, let X be the smallest Banach space containing Y and let
V' be the closure of W in the space X.

Consider transformations defined in Definition 0.2, they form a group with a
natural action
Isl.,....s OI),‘I.,A..‘I,, - ISHrt], ..... Sn+1tn for any S, ..., 8 and Iy ooyt (13)
where s; + ¢; is considered as addition modulo [0, 1].

Definition 1.2. Consider a projection L, : Y — X, given, on any fe€Y, by the
formula

Lof= Y (m/K f(ul,...,un)dul...dun>;{Kl_] _____ (1.4)

where C = {0,L ... m=1},

Tttt m

Condition 1.3. Assume the norm || - || on Y fulfills the following conditions:

(1) for any si,...,s,€[0,1) the transformation Iy, (see Definition 0.2) is an
isometry on X.

(2) for any f'e X a function (sy, ...,s,) = I, . 5 (f) is continuous.

(3) There is a constant C such that ||L,,||< C, for any integer m.

Points (1) and (2) enable us to apply the Rudin Theorem (Theorem 0.6) so we can
exchange them with the condition: assumptions of Theorem 0.6 are fulfilled.
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Consider the projection Q: Y — W given by the formula

O = [ Joins () s
+/ Iul,om‘m,uk(f)duldu3...duk
0,1

R _|_/[ ] Iul,...,uk,l.,O(f) duy duy ... dug_,
0,1]""

- (k—l)/ L () ity .. (1.5)
[0,1]"
(u; covers variables xi, ..., x,,, uy variables X, 11, ..., Xy +n, and so on, hence we
have (x1,x2, ..., X,) = (U1, us, ..., ug)).

Our aim is to prove that 0: X — V, the unique extension of the above projection
Q:Y - W, is minimal in (X, V).

Remark 1.4. Any operator Te . #(Y,Y) can be uniquely extended to the operator
Te #(X,X) by

T(f) = lim T(f),

k— o0

where { f;.} is any given sequence in Y converging to /. This extension is obviously
norm-preserving (|| 7| = ||T||).

Theorem 1.5. Assume that the norm on Y fulfills Condition 1.3. For any m a projection

Lo X = Xon (the extension of L, :Y — X, (1.4) from the above theorem) has the
properties

(1) En(V) < Vs
() there is a constant C>0 such that HZ,:,H < C, for any integer m;
() for any fe X, letting m— oo we have Ly, f —f.

Proof. X, V,, are closed and we have L,,(W)<V,,, which gives (1). The proof
of (2) is straightforward. To prove (3) observe that if feX,, then L,(f)=/f,

for any m>=my. Therefore, the pointwise convergence L f—f holds for any
feY. And Y is a dense set in X and the norms of operators L, are bounded

by C. Applying now the Banach-Steinhaus theorem we get L, f—f for any
fex. O
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Theorem 1.6. Let Q,,, .= Q/ X, Then Q,, is a projection from X,, onto V,, and we have
a formula

On(f)

1
:mnﬂ“ Z 10,52-,-~-,SA» mn n Z ISIOS} Sk f)
825000585k

81,835

e S L ol)

1517--~~,Sk(f)' (16)

Note that s; are “block integers” corresponding to the representation of n. Here

ZSI s, means the sum is over all possible choices ofsl7 .., Sk, Le., over all possible n;-
tuples s; with each coordinates in a set C = {0, } We will use this notion in

many places later on.

’m’m" 7 m

Proof. Take {yx,  }, the basis of X,,. Using the identity

......

(xla“'axn):XK,l(xl)XK,-Z( X2) 1k, (Xn),

in

where K, ,{[,71 ivtl) and the Fubini Theorem (put v; =ny + -+ +n;, ji =iy, ..., 0
m’ m
and y; = (xy,_,+1, ---, Xy,) 18 @ “block variable™), we obtain

= /[01]”"1 2k, D), 2+ w2) -+ s, (Ve + i) du .

= 1x, 1) / 1k, (V2 +u2) duy | -+ / 1k, (Vi + u) duy
1 0,12 2 0,11 e
:XK,‘I (yl)</ XKJ-,(LQ) du2></ XI(jk(uk) duk>
[0,1]"2 - [0,1]"

1 1
= 1, 01)
1 1
= LK, ) = e LK, (xl)'“)(kuv1 (x0,)-

Reasoning in the same way for L, . ., 0u.1,...c (! =0,1,....k) we arrive at

1
</[0‘1]H1 Ly O (XK[I ,»n)dul...d]—ldl+l...duk> = Mk (1.7)
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for any /{0, 1, ..., k}. In the same way we obtain

1
</[0 - Iul7~~«,uk<XK,‘1 _____ ) duy ...duk> = (1.8)

! _@. (1.9)

Q(XK,-] _____ ,-n) =

e mnfnl 'XK]-] + +m

Now observe that

1 1
Z IOJz,...,Sk (XK,-l _____ ,-n) :m"*"' Z 10,3‘2,...,3/( <XK/1 _____ /-k)
Ky 82,055k

1 Z
- mn XK/[, Ja+syseees Jk Sk

—ny
52

s oSk
1
mnfm Z XI(I[ 5 5oy Sk
§5250ee Sk
1
- mn_nl lKJ[ :

In the same way we can prove the equalities

1
Z ISI-,~~~-»VI—1-,O~SI~,~~~«,SI\'(XK[I _____ [n)

m=m

STy eeeySI-1,515 4+ 58k

1
= E , ISl,--wS/fl,O,S/,-»-.,SA» (XK,-I ____ 7 )
E k

o
SlyeeesSI—1:8754 35Sk

1
- T )CKJ/ :

Therefore, two linear operators (given by (1.5) and (1.6)) coincides on a basis of X,
and consequently are equal on X,,,. O

Theorem 1.7. Assume the norm on Y fulfills Condition 1.3 (only point (1) is needed).
Then ||Q||<2k — 1, where Q: Y — W is given by (1.5), and hence for its extension

Q: X -V we have also ||Q||<2k — 1. In particular (X, V)#0.

Proof. Since I,

.....

1Om (NI =

+ -+ ! Z Isl....,sk,l,O(f)_kn:nl Z 15'1 ..... SA(f)H

STyene k1
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1 1
S > Mo+ > Mo D
82500058k 819830055k
1 k-1
4. +mn7nk Z W, s 0O+ " Z si,.....o ()]
STyeensSk—1 S1yee sk
1 1
:mnfn] szv ||f” +mnfn2 Z ||f||
25eee Sk 815530455
1 k—1
o S Y I
STy.eeySk—1 81y 55k
= 2k + DI/

Hence [|Q/y ||[<2k—1 and consequently by the definition of Y (see (1.2))
|0/ y]|<2k — 1. But Y is dense in X so by Remark 1.4 [|Q||<2k —1. O

2. Main results

In this section every linear operator belonging to #(Y,Y) and its extension to
Z(X,X) we will, for simplicity, denote by the same letter.

We will also assume that the norm on Y fulfills Condition 1.3 and that we are
given the representation n = n| + -+ + ny.

The following theorem is crucial for our reasoning, the method used here seems to
be useful for proving that some particular projection is the only one which commutes
with a given group. What is more interesting the Chalmers—Metcalf theorem will
come in handy.

Theorem 2.1. There is only one projection S€P(Xy, V) which commutes with
isometries I, ., where s; are block variables (i.e., s; is a n; tuple) with each coordinate

inaset C = {0, #, %, e ’”le} Moreover, this projection is given by the formula (1.6) in
Theorem 1.6.

Proof. Consider the following elements of V,,:

Ao o i1 is a n; tuple with coordinates in C

LKoo o i is a ny tuple with coordinates in C

Ao o is a ny tuple with coordinates in C. (2.1)

These elements span V,,, though they do not form the basis, since dim V,, =
mh 4+ -4 m —k+ 1
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The elements XKy i form a basis of X, and in this basis any projection

SeP (X, Vi) can be written as

. _ E U J2s ey Ji
S(/CKzl.iz,...,ik) - . ' ail,iz,...,ik /(K_,‘I._/z.m._/,‘.'
JU 0255 Jk

Hence, our theorem transforms to the statement that there is only one solution to the

JtsJ2ses Jk

following system of linear equations (g;';;”"’* are treated as variables)

(1) Ly ... ;oS = Sl 4, i, for any n-tuple with coordinates in C;

(2) S(xk, . . )€Vm, for any n-tuple with coordinates in C;

R

(3) S(XKil.() ..... 0) = XKil,o.....o7 "'7S(XKU ..... (),[k) = XK(),...,().;‘/(' (22)

It is easy to see that these equations are linear. (2) and (3) state that S is a projection
from X, onto V,, (point (2)) states that some of @],/ are zeros, since we can

choose from I the basis of V,, and point (3) gives S/, = idy,, since the

elements (2.1) span V).

Observe that system (2.2) has a solution—a projection (1.6). Indeed from the form
of this projection (1.6) and, if we realize that (1.3) gives that transformations 1; ;, . ;
commute with each other, we get (1), moreover (2) and (3) are automatically fulfilled
because the projection (1.6) is a projection from X,, onto V,.

Since X, is finite dimensional, and in finite-dimensional spaces all linear operators
are continuous (in any norm) then the solution of system (2.2) does not depend on
any particular norm. Therefore we choose a Hilbert norm on X, (the norm which
makes X, a Hilbert space).

Take any projection S which commutes with the group of isometries I, ., (using
the Chalmers—Metcalf theorem we will prove that this projection has to be minimal
and since in Hilbert spaces there is only one minimal projection onto any closed
subspace (the orthogonal projection) then all these projections have to be equal to
orthogonal projection; hence there is only one solution to the (2.2)).

Take any extremal pair (y,x)e&(S) (ie., [y(S(x))|=|S||, recall that we are
considering the Hilbert norm). Observe that also (I, . ;(»), L, . . i (x))€&(S).
Indeed, since S commutes with [;, _; and y(IiT,l...,i/( (z)) = (I;),...;.y)(z), we have

[1S1] = (SEN| = W(Fi.oo) ™ ST (%)
= (T (ST O] = | i) (S Uiy (D))

Thus, we can define the operator Eg (similarly to [26]) by

ES - Z (Iil,...,iky)®(I[1,m’,‘kx)ZXm—>Xm. (23)

Now, we will prove that Eg(V,,) < V,,, which will gives us that Eg is a Chalmers—
Metcalf operator. To do so, take any yg , ; using y(I; (@) = (T p)(2) we
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compute
m'Es(tx, 0 )= 2, i i) @i 3k, o )
i1,k
= Z (Ill,u-,iky)(XKSl 0..... 0) Ill ----- ik (X)
T
= Z y( z],l....ik(XK\-l 0 0)) I’l ~~~~~ Ui (X)
1yeneslk
= > i i) ke o) T i (%)
T yeee,y i
= > v ik ) Toiv i (X5
iy
in the last equality we have changed the summation putting i/’ = —i; modulo [0, 1).

Observe that I;,
have

ik, o o) = XK, ..o 4 SO using the previous computation we
1.0, 14710,

.....

mnES(XK\I.n.“..n) = Z y(lil«,--wik (XK\-I.O....,O)) I—ilv--w_"k (X)

I yeee,y i
= D YKo o) Lini(X)
Hyuuny ik

= 0k e ) (Z - (x)>. (2.4)

i

Consider now the term in brackets in the last equality. Observe that for any

1, ..., tx (x; are block variables with each coordinate in a set C = {0,1 2 . 2=1})
we get
< Z Ifi| ..... ik(x)> (tla ~~-;tk) = Z X([l - ilatz - i27 vyl — lk)
2T [ETRN
= Z x(t1 — 1'1,1'2,, ...,l'/c/).
i

And since x€ X, (therefore the values of x at k-tuples 71, ..., #; determine x), then
from the above, the last sum depends only on the first n; variables (¢;th is a n; tuple),
hence it belongs to V,,, i.e., we have

< Z I_,~17m7_,»k(x)> eV, forany i, ..., 0.
ik

This, with (2.4), gives ES(XKI_U _____ ,) € Vi (for any s1). Now we can conduct the same

reasoning for other elements from (2.1). But since elements from (2.1) span X, we
get Es(Xi) < Vi

Therefore, indeed, Es is a Chalmers—Metcalf operator and from Theorem 0.8 a
projection S is minimal (We have proved: If a projection S commutes with isometries

I, ... ; then it has to be a minimal projection in the Hilbert norm). But we know that
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in Hilbert spaces a minimal projection on any closed subspace is unique (it is the
orthogonal projection) and the projection Q,, given by (1.6) is minimal (since it
commutes with [; ;). Hence S = Q,, and as a consequence the system (2.2) has
only one solution. [

Observe that, if we use the above theorem and apply the Rudin theorem (Theorem
0.6) we will get the minimality of the projection (1.6) in a discrete case (we can then
think of X,, as a m-dimensional matrix space), i.e., we get the minimality of
projection (1.6) in 2(X,,, V,,). Hence we have

Theorem 2.2. Consider X, with the norm fulfilling the following condition:

......

block variables, i.e., s; is a n; tuple with each coordinate in

asetC{Olz ’m_—l}) (2.5)
m m

Then the projection Q,, : X, >V, given by the formula

1
Qm(f) :m”—”l Z 10,32....,xk Wl” " Z 13] ,0,53,. )

515535

—1
mll Nk Z IYI < 5Sk— l0 Z Iﬂ'l Vk (26)

< Sk—1 S1yee 58k

is both minimal and co-minimal in the set P(Xp, V).

The above theorem is a generalization of results of Cheney and Light [8], where
they have found a minimal projection for n = 2 (and the partition 2 = 1 4 1). Also, it
is proved in [26] that for n =2 there is only one minimal projection in a set
P(Xm, Vi) (We have the uniqueness of a minimal projection). Following the same
approach we can also prove uniqueness for any #z in a discrete case (but this is out of
the scope of this paper so we do not provide any details here).

Observe, now that if some norm does not fulfill condition (2.5) (as for instance in
the case of Musielak—Orlicz sequence spaces) then we can slightly modify it as
follows.

Remark 2.3. Consider X, with any given norm || - ||,. Then the norm || - || given on
any element xe X, by

1
Il =2 Y sy

STyeee Sk

fulfills condition (2.5) from Theorem 2.2.

Lemma 2.6. Fix m. Then I, go°Ly = Lyl s, for any sy, ..., Sk.
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Proof. Let (s, ...,s¢) = (i1, ..., iy). Changing variables (v; = u; + i;) we get

Il
/—\
3

=
7~
\
=
&
&
N———

.....

H’If

in the third equality we have changed summation putting j/' =j; —i; modulo
[0,1). O

11,

Now we will prove the crucial theorem.

Theorem 2.7. There is only one projection Pe (X, V') which commutes with the group
T, (see Definition 0.2). This projection is given by formula (1.5).

Proof. Take any projection P which commutes with 7},. Put
Sm =LyoP:X->V, (27)
and

S/\r/n = m/)(m X = Vi (28)

From the properties of the projection L,, (described in Theorem 1.5) operator S‘,vn isa
linear projection from X, onto V,,.
Let Q,, be the projection given by (1.6).

Fix any iy, ..., i,. Since P commutes with 7,, and using the above Lemma 2.6 we
get
L. i,oSm =1, .. i,oLimoP = (I, ... i, oL)°P
=(Lweli...i,)oP = L~ (Iy,...i,°P)
=Lyo(Pol;, . ;) = (LweP)edyy, i = Smeliy, . i,-
And since 1y, ;, (X)) = Xy, for any iy, ...,i,e C = {0,L 2 m=1} we have also
L .. ,”og;, = :9;,01,1 ‘‘‘‘‘ ;, forany i, ...,i,eC. (2.9)

From (2.9) and Theorem 2.1 the projections S‘; have to be given by formula (1.6),
therefore

LyoP/y = Sy =0, forany meN. (2.10)



Lestaw Skrzypek | Journal of Approximation Theory 123 (2003) 214-231 227

Notice that projection Q given by (1.5) has property (see Theorem 1.6)
Q/y, = O for any meN. (2.11)

Fix any f'e X. From the definition of X (see Definition 1.1) we can choose a sequence
{fm} such that f,, € X,, and || f — f,u|| =0 (with m— o0). From (2.10) and (2.11) and
points (2), (3) from Theorem 1.5 we get

(P = QYN = I(P = Lo P) () + (LinoP = Q) (/)|
S (P = Lo PY(O)| + [[(LmoP = Q) (S
=|(P = Lo P) (N + [[(LmoP = O)(f =Sl
S (P = Lo PY(OI| + (CHPI QI - (S =Sl

And since letting m— oo the right side of the above inequality tends to 0 we have
P=0. O

Combining the above Theorems 2.7 and 1.7 with the Rudin theorem (Theorem
0.6) and using the fact that Idy commutes with the group 7, we get

Theorem 2.8. Fix any partitionn = n; + --- + ni. Consider the space Y (see Definition
1.1) with a norm fulfilling Condition 1.3. Let X be the smallest Banach space containing

Y and V be the closure of W in the space X. Then the projection Q: X — V, which is
the unique extension of projection Q:Y — W given by

f)/[] Tous.... () duts dlts ...y
-
+/ Ly, 0ats,.. i, () duy dus ....duy,
[0,1])1*’12
- +/ L. 0(f) duty duty....dug
oup

— (k— 1)/[ | Iul,,_,,uk(f)dul...duk
0,1]"

is both minimal and co-minimal in the set 2(X, V).

Now, we will provide some examples of norms fulfilling Condition 1.3, hence we
get the minimality of Q in many natural spaces.

We will start with L, norms. Condition 1.3 is then fulfilled and since for pe|l, o)
the closure of Y is the space X = L7([0,1]") we may state
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Theorem 2.9. Take pe[l, o) and fix any representation n = ny + --- + ng. Then the
projection Q given by the formula

(f) = /[ ] 107142;”-,14/((](‘) du2 du3...duk
0.1
+ / Iul,O,u_;,...,uk (f) dul d]/l3 "'duk
[0’ ]n—nz

n +/[ o0 i i
()71”*”,c

is both minimal and co-minimal from X = LP([0,1]") onto V = LF([0,1]") + --- +
L7([0,1]™) (i.e., V is a subspace consisting of functions of block independent variables
corresponding to the given representation of n—see Definition 0.1).

Now we present further examples; we will need a notion of Orlicz spaces.

Let M be the set of all measurable functions with respect to the Lebesgue measure
and finite almost everywhere, divided by the relation of equality almost everywhere.

Let ¢ be a convex function ¢ : RT —R" such that ¢(0) = 0 and ¢ #0.

The Orlicz space we will call the following space:

L(0,1]") = {feM: Jim </W S |f (x1, ...,x,,)|)dx1...dxn> ao}.

(2.12)
The space of finite elements of the Orlicz space is a space
E?([0,1]") = { feM: S f(x1y ..y xn)]) dxy...dx, < + o0,
[071]71
for any i>0}. (2.13)

The Orlicz modular corresponding to a given function ¢ is given on any function
f €M by the formula

pg (f) = A f(x1, .ory x0)]) doxy ...dx,.

.11

We can equip space L? (so also E?, since E? = L?) with the Luxemburg (2.14) or
the Orlicz norm (2.15) (in case of the Orlicz norm we use the Amemiya formula)

1fly = inf{d>0: py (f/d)<1}, (2.14)

AWy = inf {d +d p, (£/)}. (2.15)



Lestaw Skrzypek | Journal of Approximation Theory 123 (2003) 214-231 229

The reader particularly interested in Orlicz spaces and its applications is referred
to [5,21].

We can easily see that both these norms fulfill Condition 1.3 (since py (L f) =
p(f) and using the Jensen inequality we get p, (L, f) <p4(f))- Since the closure of

Y (see Definition 1.1) in both the Luxemburg and the Orlicz norm equals E?, using
Theorem 2.8, we may state

Theorem 2.10. Fix any representation n=n;+ --- +n,. Consider the space

E?([0,1]") equipped with the Luxemburg or the Orlicz norm. Then the projection Q
given by the formula

Q(f) = ‘/[ | Io,uz,...,uk (f) duy dus ... duy
0.1
+ /[ | Iul,o,u%“,uk(f) duy dus ... duy
0,11

+ +/[ ] Ly, 0(f) duy dus ... duge
071"’“1{

is both minimal and co-minimal from X = E?®([0,1]") onto V = E®([0,1]") + --- +
E?([0,1]™) (i.e., V is a subspace consisting of functions of block independent variables
corresponding to the given representation of n—see Definition 0.1).

For the equality of spaces L? = E? it is necessary and sufficient that ¢pe(A,).
We say ¢pe(A,) if there is a constant C>0 and 4y >0 such that

¢Qu)< Cop(u) for any uzuy. (2.16)
Now we can reformulate Theorem 2.10 as follows.
Theorem 2.11. Fix any representation n=ny + --- + ng. Assume that the Orlicz

function ¢ fulfills the condition (/\,) and consider the space L?([0,1]") equipped with
the Luxemburg or the Orlicz norm. Then the projection Q given by the formula

o(f) = /[ T () s s
011"
+ / Ly 0ass, .., () duy dus ... duy,
[0,1]’7*’12
+ .- +/ Iuh...,uk,l,O(f) du1 duz...duk,l
0,1

- (k_ 1)/[ | Iul,,_,,uk(f')dul...duk
0,1]"
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is both minimal and co-minimal from X = L*([0,1]") onto V = L?([0,1]") + --- +
L?([0,1]™) (i.e., V is a subspace consisted of functions of block independent variables
corresponding to the given representation of n—see Definition 0.1).

Modifying norms fulfilling Condition 1.3 we can obtain further examples fulfilling
this condition as follows.

Theorem 2.12. Assume that norms || - ||, ..., || - || fulfill Condition 1.3. Then also the
norms

() (]~ = max{f] -l o ] [l

@11 = ()7 A+ =+ - 1M, for pell, o),

Sfulfill Condition 1.3.

Theorem 2.13. Take functions ¢, ..., ¢, as in definition of the Orlicz space. Then the
Luxemburg and the Orlicz norm generated by the following modulars:

(1) ,0() = max{p¢l(-), "~ap¢k(')}7
2 p() = (@1(py, () + - +ock(p¢k(-))”)l/”7 for any ay, ..., o >0.

fulfill Condition 1.3.

Proof. We get it easily if we first observe that p, (L.f)=p, (/) and
Py, (Luf)<pgy,(f). O
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